Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
2.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.04.12.487988

ABSTRACT

The severity of disease following infection with SARS-CoV-2 is determined by viral replication kinetics and host immunity, with early T cell responses and/or suppression of viraemia driving a favourable outcome. Recent studies have uncovered a role for cholesterol metabolism in the SARS-CoV-2 life cycle and in T cell function. Here we show that blockade of the enzyme Acyl-CoA:cholesterol acyltransferase (ACAT) with Avasimibe inhibits SARS-CoV-2 entry and fusion independent of transmembrane protease serine 2 expression in multiple cell types. We also demonstrate a role for ACAT in regulating SARS-CoV-2 RNA replication in primary bronchial epithelial cells. Furthermore, Avasimibe boosts the expansion of functional SARS-CoV-2-specific T cells from the blood of patients sampled in the acute phase of infection. Thus, re-purposing of available ACAT inhibitors provides a compelling therapeutic strategy for the treatment of COVID-19 to achieve both antiviral and immunomodulatory effects.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
3.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.03.15.484379

ABSTRACT

Understanding the host pathways that define susceptibility to SARS-CoV-2 infection and disease are essential for the design of new therapies. Oxygen levels in the microenvironment define the transcriptional landscape, however the influence of hypoxia on virus replication and disease in animal models is not well understood. In this study, we identify a role for the hypoxic inducible factor (HIF) signalling axis to inhibit SARS-CoV-2 infection, epithelial damage and respiratory symptoms in Syrian hamsters. Pharmacological activation of HIF with the prolyl-hydroxylase inhibitor FG-4592 significantly reduced the levels of infectious virus in the upper and lower respiratory tract. Nasal and lung epithelia showed a reduction in SARS-CoV-2 RNA and nucleocapsid expression in treated animals. Transcriptomic and pathological analysis showed reduced epithelial damage and increased expression of ciliated cells. Our study provides new insights on the intrinsic antiviral properties of the HIF signalling pathway in SARS-CoV-2 replication that may be applicable to other respiratory pathogens and identifies new therapeutic opportunities.


Subject(s)
Lung Diseases , Factor X Deficiency , Hypoxia , COVID-19 , Neoplasms, Glandular and Epithelial
4.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.06.29.450133

ABSTRACT

Despite an unprecedented global research effort on SARS-CoV-2, early replication events remain poorly understood. Given the clinical importance of emergent viral variants with increased transmission, there is an urgent need to understand the early stages of viral replication and transcription. We used single molecule fluorescence in situ hybridisation (smFISH) to quantify positive sense RNA genomes with 95% detection efficiency, while simultaneously visualising negative sense genomes, sub-genomic RNAs and viral proteins. Our absolute quantification of viral RNAs and replication factories revealed that SARS-CoV-2 genomic RNA is long-lived after entry, suggesting that it avoids degradation by cellular nucleases. Moreover, we observed that SARS-CoV-2 replication is highly variable between cells, with only a small cell population displaying high burden of viral RNA. Unexpectedly, the Alpha variant, first identified in the UK, exhibits significantly slower replication kinetics than the Victoria strain, suggesting a novel mechanism contributing to its higher transmissibility with important clinical implications.

5.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.03.20.436163

ABSTRACT

The COVID-19 pandemic, caused by SARS-CoV-2 coronavirus, is a global health issue with unprecedented challenges for public health. SARS-CoV-2 primarily infects cells of the respiratory tract, via binding human angiotensin-converting enzyme (ACE2), and infection can result in pneumonia and acute respiratory distress syndrome. Circadian rhythms coordinate an organisms response to its environment and recent studies report a role for the circadian clock to regulate host susceptibility to virus infection. Influenza A infection of arhythmic mice, lacking the circadian component BMAL1, results in higher viral replication and elevated inflammatory responses leading to more severe bronchitis, highlighting the impact of circadian pathways in respiratory function. We demonstrate circadian regulation of ACE2 in lung epithelial cells and show that silencing BMAL1 or treatment with the synthetic REV-ERB agonist SR9009 reduces ACE2 expression and inhibits SARS-CoV-2 entry and RNA replication. Treating infected cells with SR9009 limits viral replication and secretion of infectious particles, showing that post-entry steps in the viral life cycle are influenced by the circadian system. Our study suggests new approaches to understand and improve therapeutic targeting of COVID-19.


Subject(s)
Coronavirus Infections , Respiratory Distress Syndrome , Bronchitis , Pneumonia , Severe Acute Respiratory Syndrome , Tumor Virus Infections , COVID-19
6.
ssrn; 2020.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3720002

ABSTRACT

COVID-19, caused by the novel coronavirus SARS-CoV-2, is a global health issue with more than 1 million fatalities to date. Understanding how host factors modify the viral life cycle could inform susceptibility to viral infection and the design of new therapies. Viral replication is shaped by the cellular microenvironment and one important factor is local oxygen tension, where hypoxia inducible factor (HIF) regulates transcriptional responses to hypoxia. SARS-CoV-2 primarily infects cells of the respiratory tract, entering via its Spike glycoprotein binding to angiotensin-converting enzyme (ACE2). We demonstrate that hypoxia and the HIF prolyl hydroxylase inhibitor Roxadustat (FG-4592) reduce ACE2 expression and inhibit SARS-CoV-2 entry and replication in lung epithelial cells via a HIF-1α dependent signalling pathway. Further, hypoxia and Roxadustat inhibit viral replication in SARS-CoV-2 infected cells, showing that post-entry steps in the viral life cycle are oxygen-sensitive. This study highlights the importance of hypoxia and HIF signalling in regulating multiple aspects of SARS-CoV-2 infection and raises the potential use of HIF prolyl hydroxylase inhibitors in the prevention and/or treatment of COVID-19.Funding: The McKeating laboratory is funded by a Wellcome Investigator Award (IA) 200838/Z/16/Z, UK Medical Research Council (MRC) project grant MR/R022011/1 and Chinese Academy of Medical Sciences (CAMS) Innovation Fund for Medical Science (CIFMS), China (grant number: 2018-I2M-2-002). The Ratcliffe laboratory is funded by the Oxford Branch of the Ludwig Institute for Cancer Research; Wellcome IA 106241/Z/14/Z; the Francis Crick Institute, which receives core funding from Cancer Research UK (FC001501), UK MRC (FC001501) and Wellcome (FC001501); the Paradifference Foundation. PJR, EJH and TB are additionally funded by the COVID-19 Research Response Fund, University of Oxford. SK is funded by the Clarendon Scholarships Fund and the Christopher Welch Trust. The Davis laboratory is funded by Wellcome IA 209412/Z/17/Z and Wellcome Strategic Awards 091911/B/10/Z and 107457/Z/15/Z. JYL is funded by the Medial Sciences Graduate Studentship, University of Oxford. The Hinks laboratory is funded by grants from the Wellcome (104553/z/14/z, 211050/Z/18/z) and the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre; the views expressed are those of the authors and not those of the NHS or NIHR. Conflict of Interest: EJH is employed under the Cambridge Experimental Medicine Initiative, which is partly funded by AstraZeneca although they have not been involved in this project. The other authors declare no financial interests.Ethical Approval: The study was reviewed by the Oxford Research Ethics Committee B (18/SC/0361).


Subject(s)
Neoplasms , Hypoxia , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL